
MCBC
Monte Carlo Charge Breeding Code

Version 1.0

Copyright (©) September 2016
by

FAR-TECH, Inc.
3550 General Atomics Ct, MS 15-155

San Diego CA 92121
Phone 858-455-6655

Email support@far-tech.com
URL http//far-tech.com

This manual may be reproduced in whole or in part with permission of FAR-TECH, Inc.

Introduction

MCBC is a Monte Carlo particle-tracking code, written in Fortran, which runs under
Unix/Linux systems. It simulates the creation of higher charge-state ions by injecting a
+1 ion beam into an ECRIS plasma. MCBC can follow the trajectories of the ions and
simulate Coulomb collisions, ionizations, and charge exchanges with the background
plasma. There are two operational modes in MCBC. First, MCBC can predict the profile
of captured ions in the given ECRIS plasma by setting Steady_state as false. For this
code, we define “capture” as follows: when the energy of a test ion is less than the
temperature of the background plasma ions, we call it "captured". Also MCBC can track
the injected ions until they are lost or exit from the device if Steady_state is true.

Getting Started

Unix/Linux Installation

Place the MCBC2010.zip file in a directory of your choosing and type the following
commands at the prompt:

unzip MCBC2010.zip
cd MCBC2010
chmod +x mcbc mcbc32 mcbc_mpi mcbc_mpi32

You can delete the MCBC2010.zip file at this point, if desired.

In order to take advantage of all the features of MCBC, the following packages should be
installed on your system:

Package Purpose
NetCDF required; saving data
OpenGL optional; plotting

results
MATLAB * optional; plotting

results

* The plotting scripts work using MATLAB R2007b with the external MEXNC (NetCDF
toolbox) package installed. They may also work on other versions of MATLAB, but
MEXNC is needed.

Program Execution

To run MCBC on a single processor on a 64-bit machine, type:
./mcbc

Running MCBC on multiple processors is possible, but still in the testing stage. Future
versions of the code will include a more thoroughly tested multi-processor capability; for
now, it is not recommended that you use this capability. To run MCBC on multiple

processors, you must have the MPI environment set up. Then edit the file
linux.machines. This file lists the node names which will be used in the run. They
should be modified to correspond to the node names for your system. For example, to
start the simulation on 3 processors, issue the command:

mpirun -machinefile linux.machines –np 3 mcbc_mpi

Units Used in MCBC

SI units are used unless specified otherwise:

time..…………………second
length………………...meter
current……………….Ampere
energy………………..eV
potential……………...Volts
magnetic field………..Tesla
charge………………..Coulomb

MCBC Input

The general input parameters for MCBC are specified in the file mcbc.in. In addition,
the 3D background plasma parameters, magnetic field, and electrical field must be
provided.

The following tables list the input parameters in the file mcbc.in. For many runs, only
a few of the default values for these parameters may need to be modified.

General Parameters

Variable Name Type Description

number_ions_injected integer Number of injected beam ions

number_ions_per_cpu integer Number of ions per cpu for each job sent when
parallel computation is used

timestep_max integer Maximum number of time steps allowed
beam_energy real Beam kinetic energy
ngrid_x integer Number of x grid points
ngrid_y integer Number of y grid points
ngrid_z integer Number of z grid points

plasma_data_flag flag Flag for plasma data
-1 = Internally created (see Plasma

Parameters, below)
0 = No plasma
1 = Read plasma data from *.data files
2 = Read plasma data from the NetCDF file

GEM_data (see below)

use_maxwellian_edf logic
Flag for electron distribution function (EDF)
.T. = Use Maxwellian EDF
.F. = Use GEM EDF (non-Maxwellian)

ipush flag

Flag for ODE solver
1 = Boris Leap Frog
2 = 2nd order Runge Kutta (RK)
3 = 4th order Runge Kutta (RK)

Steady_state flag

Flag for MCBC operation mode
.T. = ions are tracked until they are lost or exit
the device
.F.= ions capture mode

GEM_data text Filename for plasma background parameters
calculated by GEM, in netCDF format

MCBC_output_FILE text MCBC output file for GEM, in netCDF format
nbins_r integer Number of bins in r direction for captured ions
nbins_z integer Number of bins in z direction for captured ions
Nsave integer Save results (during the run) after this number

of ions have been injected
Nprint integer Write screen output after this number of ions

have been injected
timestep_fraction real Used to adjust the timestep

ECR Device Parameters

Variable Name Type Description

domain_x real Computational x-domain
domain_y real Computational y-domain
domain_z real Computational z-domain
device_position_z real Starting z-position of ECRIS chamber
device_length real Length of ECRIS device
device_radius real Radius of ECRIS device
injection_aperture_radius real Injection aperture radius
beam_center_x real Beam center position
beam_center_y real Beam center position
beam_center_z real Beam center position

b_field_flag * flag

Flag for generating the magnetic field
-1 Generate field using experimental field data

and save it to magnetic.nc (in NetCDF
format)

0 No magnetic field
1 Read field from a *.data file
2 Read field from the file magnetic.nc (in

NetCDF format)
3 Use polynomial fitting parameters to

generate magnetic field
scale_factor_b_field real Multiplier/scaling factor for the magnetic field
axial_field text Filename for axial field data (see Note, below)
poly_deg integer 0 No mirror field

[positive integer] Polynomial fitting degree for
mirror field

poly_f ** array Coefficients for polynomial fitting
radial_field text Filename for radial field data (see Note, below)

multipole_order flag

Order of the multipole field.
0 No multipole field
2 Quadrupole
3 Hexapole

e_field_flag flag

Flag for generating electric field profile
0 No E field
1 Read E field from a *.data file
2 E Field read from the NetCDF file

GEM_data (see above)
scale_factor_e_field real Multiplier/scaling factor for the electric field

* If b_field_flag = 0, 1, or 2, then the parameters axial_field, poly_deg,
poly_f, radial_field, and multipole_order are not used.

If b_field_flag = -1, the parameters axial_field, poly_deg, radial_field,
and multipole_order are used; poly_f is not.

If b_field_flag = 3, then axial_field, poly_deg, poly_f, radial_field,
and multipole_order are all used.

** You can generate these polynomial fitting coefficients using MATLAB, which may
provide a better fitting than MCBC does (with b_field_flag = -1). To do so, use the
built-in MATLAB function:

[P, S, mu] = polyfit(z, Bz, N)
z and Bz are the measured values. N is the polynomial degree (poly_deg in MCBC).
P contains the polynomial coefficients (poly_f in MCBC).

Note: The format for the axial_field file is as follows:
n
z1 Bz1
z2 Bz2•••
zn Bzn

The format for the radial_field file is identical, using r and Br instead of z and Bz.

Plasma Parameters

The following are used only if plasma_data_flag = -1:

Variable Name Type Description

temp_e real Electron temperature
den_e real Electron density
temp_i real Ion temperature
charge_eff * real Effective charge of background plasma
den_n real Neutral density

* Effective charge state of the background plasma. During Coulomb collisions, the test
beam ion should collide with every ion charge state of the background plasma but to
simplify the problem, we only let it collide with one effective ion which has effective
charge zeff = sum(qj*qj*nij)/sum(qj*nij) , j=1,2,.....A.

Other plasma parameters:

Variable Name Type Description

charge_i integer Ion charge number (Not used)
mass_i real Ion mass number of background plasma
temp_n real Neutral temperature (Not used)
mass_n integer Neutral mass number
ion_atomic_number integer Atomic number of background plasma ions

Beam Parameters

Variable Name Type Description

temp_s real Default value for source temperature
mass_s real Source ion mass
charge_s real Source ion charge state at the beginning
beam_atomic_number integer Atomic Number of beam ions
beam_angular_divergence real Beam angular spread in mrad
beam_current real Ion beam current

Miscellaneous Parameters

Variable Name Type Description

output_ion_positions logic
Flag for saving ion positions at the given times
.F. do not record ion positions
.T. record final ion positions

output_trace logic
Flag for saving the ion trajectories
.F. don’t trace ions
.T. trace ion trajectories

number_of_trace_ions integer Number of ion trajectories that are saved
trace_timestep_maximum integer Maximum number of time steps allowed for

tracing trajectories

snapshot_time_number integer Number of elements in snapshot_time_array
snapshot_time_array array The times to take snapshots

To specify the 3D background plasma parameters, magnetic field, and electrical field,
you have three options. You select which option to use by setting the
plasma_data_flag, b_field_flag, and e_field_flag parameters in mcbc.in
(see the above descriptions in the General Parameters and ECR Device Parameters
tables).

1. Import these values from GEM.
GEM.sav is an example NetCDF output file created using GEM1D.

2. Have MCBC create a uniform plasma.
For this option, you must specify the appropriate parameters in mcbc.in.

3. Read the values from *.data files. The following table lists the required file
names for the 3D background plasma parameters, 3D magnetic field, and 3D
electrical field.

Parameter Variable Name File Name
electron density ne(i,j,k) density_e.data
ion density ni(i,j,k) density_i.data
electron temperature Te(i,j,k) temperature_e.data
ion temperature Ti(i,j,k) temperature_i.data
effective charge * zeff(i,j,k) zeff.data
magnetic field bx(i,j,k), by(i,j,k), bz(i,j,k) m_field.data
electric field ex(i,j,k), ey(i,j,k), ez(i,j,k) e_field.data

* See the note for charge_eff in the Plasma Parameters table, above.

Sample *.data files are included in the distribution. Your *.data files must
follow the same format as these example files. The size of the data matrixes
is (ngrid_x+1,ngrid_y+1,ngrid_z+1).

The following code describes how the magnetic field and electron density are
read into the program. The electric field is read in the same way as the
magnetic field; all other variables are read in the same way as the electron
density.

Magnetic Field

DO i=1,ngrid_x+1
DO j=1,ngrid_y+1

DO k=1,ngrid_z+1
read(80,*) bx(i,j,k),by(i,j,k),bz(i,j,k)

ENDDO
ENDDO

ENDDO

Electron Density

DO i=1,ngrid_x+1
DO j=1,ngrid_y+1

DO k=1,ngrid_z+1
read(80,*) n_e(i,j,k)

ENDDO
ENDDO

ENDDO

MCBC Output

As the simulation runs, MCBC displays updates on the screen. The following is a
sample print out:

Nion = 2000, Time = 0.145E-03 I_time= 123

Lost = 13.20%, Exit = 13.10%, Back = 0.00%
Trap = 73.15%, Move = 0.00%, Neu = 0.55%
1+ = 33.55%, 2+ = 34.40%, 3+ = 4.95%
4+ = 0.15%, 5+ = 0.00%, 6+ = 0.00%

On the first line, the number of injected ions, moving (tracing) time of the last ion, and
number of time steps traced for the last ion are displayed. The second and third lines
consist of the percentages of ions that are lost to the wall, exit to the extraction end,
come back to the injection end, are captured (trapped) in the plasma, are still moving in
the plasma when the maximum time step is reached, and are neutralized. Lines four
and five show the percentages of the ions that are in these charge states when they are
captured.

The output from MCBC consists of the profile of captured test ions. MCBC generates
the following output files:

MCBC.log
This text file provides a simple summary of the MCBC run.

MCBC_output.sav
This NetCDF file is used to save beam capture profiles and diagnostic data for
plotting and for future calculations using GEM. MCBC_output.sav is the main
output file for MCBC.

To view the contents of the NetCDF file as text, type:

ncdump MCBC_output.sav > MCBC_output.txt
Then use a text editor to view MCBC_output.txt.

magnetic.nc
This NetCDF file contains the magnetic field from the last run. The file
MCBC_output.sav also includes the magnetic field data, but magnetic.nc is
provided for using the magnetic field separately.

In addition, MCBC includes two tools for plotting the results: an OpenGL tool and a
MATLAB script. The OpenGL plotting tool is meant for quickly checking the simulation
results; the MATLAB script provides more extensive plotting capabilities. If OpenGL is
installed on your system, you can view basic plots of MCBC’s input and output by
issuing the following command:

./plot_tool.dat
This tool plots the values contained in the file plot_input.txt: plasma profiles (input)
and charge state distribution on axis (output).

If MATLAB is available on your system, you can use the provided MATLAB script
(mcbcs.m) to read and plot the data in MCBC_output.sav. To generate the MATLAB
plots, issue the following command at the MATLAB prompt:

mcbcs
Note that all the other MATLAB scripts which are included with the distribution
(find_seg.m, pathdef.m, readnc.m, and FundConst.m) are auxiliary functions
which are used by mcbcs.m.

The MATLAB mcbcs function creates plots of the input and output for MCBC. This
includes plots of the background plasma and magnetic field profiles (input) as well as the
profiles of the captured ions (output). Additional output plots can be generated through
the parameters listed in the Miscellaneous Parameters table (above). Sample MATLAB
output plots are provided in the following section.

An Example Run Using MCBC

The MCBC package also includes an example simulation of the charge breeding of a 1+
rubidium ion beam in an oxygen plasma. (Simply issuing the command ./mcbc without
altering any of the distribution files will run this example.) In this section we describe the
setup and MCBC results for the example. All input and output plots shown here were
generated using the MATLAB mcbcs function.

Simulation Geometry and Background ECRIS Plasma

The simulated ECRIS device is 0.29m in length and 0.08m in diameter. The MCBC
simulation domain ranges from 0 to 0.35m in the z direction and 0 to 0.08m in the x and
y directions (see Figure 1). The ECRIS device (the shaded area in Figure 1) is placed at
z=0.03m. The background oxygen plasma is calculated by GEM1D using the
parameters listed in Table 1 (below). The 3D magnetic field is fitted from given radial

and axial measurements. In this example, the polynomial fitting is done in MATLAB.
The polynomial coefficients are transferred to MCBC through the input parameter poly_f.

The plasma profile calculated by GEM1D is plotted in Figure 2. Since it provides only a
1D profile, MCBC will automatically extend it onto the 3D simulation grid space.

TABLE 1. Main simulation parameters of GEM 1D.

Parameters Values

rf power (W)
rf frequency (GHz)
Supporting plasma
Gas pressure (Torr)

Length (cm)
Radius (cm)
Binjection/Bmin
Bextraction/Bmin

450
10.00

oxygen
7102.1 

29
4

4.5
3.0

Figure 1. MCBC simulation domain and ECRIS device.

Figure 2: Background oxygen plasma and axial magnetic field profiles calculated by GEM1D.

MCBC Results

Once the plasma profiles are calculated, MCBC is used to simulate the injection and
trapping of the rubidium beam. All Rb+ particles are started at the z = 0.03m axial
location (see Figure 1), where the axial magnetic field is at a maximum (Figure 2). The
beam is assumed to be mono-energetic, and distributed uniformly on the 1mm beam
radius.

Each particle is tracked until it is “captured” or hits the wall, with “capture” being defined
as having energy less than the temperature of the oxygen ions, which is assumed to be
1eV. The locations at which the beam ions are captured are then typically grouped into
2D bins. However, for this example case, only 1D axial bins are used. The profile of the
captured rubidium ions is shown in Figure 3. The efficiency is calculated by dividing the
number of captured ions with each charge state by the total number of injected rubidium
ions, which is 5,000 in this example.

Figure 3: Profiles of captured Rb ions.

Diagnostics

If output_trace is turned on, MCBC can record the trajectories of the ions. Figure 4 is
an example trajectory plot. It shows the trajectories of the first 10 injected rubidium ions,
with different colors representing different charge states.

Figure 4: Ion trajectory plot. When q=1, the trajectory is plotted in green; when q=2, the trajectory
is blue; when q=3, the trajectory is red.

If output_ion_positions is turned on, the initial and final positions of the ions are
recorded (see Figure 5). Snapshots of the ion positions are also saved at the user-
defined times in snapshot_time_array (Figure 6).

Figure 5: Recorded final ion positions. Red: ions exiting the device; green: captured ions; blue:
ions that are lost to the wall or injection end.

Figure 6: Snapshots of the ions at different times.

